

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173

CHAIN-OF-CUSTODY RECORD

c.o.c. serial no. 6065

618/281-5120	FAX																			
PROJECT	NAME (& BUI	24	26	TON PIER 91		T	4 -	/	///	/ ,	/ /	7	/		PRESER-	/			
PROJECT	NUMBER	6248	78		MAJOR TASK 7301] "	A TAR		\searrow	5					/ v	ATIVES /	/			
SAMPLER	rs J. [ence				ER	123	3/1	3 /	07						9	REM	ARKS		١
LAB DES	TINATION	SAS] μ 🕺	4	15	1 cc	100/	/ /	/ /	/ /	/ /	/ / <i>š</i>	9	(CHEMICAL ANA	LYSIS REQ	UEST	
SAMPLE NO.	DATE	TIME	Como	Spage	SAMPLE LOCATION	NO. OF CONTAINERS	1	4/5	Fr	3/				1	CHEMICS!		FORM NUMBER	(IF APPLICA	ABLE)	
	9-21	1135		X	CP-4A6-45-5	1	×	X	¥											
	9-21	1150		X	CP- HA6-6-6.5	1	X	X	¥											
	9-22	945		X	OP-MA3-45-5	1	14	X	4											
	9-22	950		4	CP- HA3-6-6.5	5 1	X	X	1										-	
							T												-	1
																				1
																			EX.	1
																			0	
																			30	
																			6	
																			10-1	
																			i	
										<u></u>										
RELINQUI	SHED BY								REC	EIVED	ВΥ									
	1	SIG	NATU	IRE	7	DATE	T	ME		10	() A		~	SIG	NATURE			DATE	TIME	7
	12		/ >	, 1	al 19	1-12	7 h	35	(18	V ol	ml	m	1		SHS	6	1-93	10:35	4
180	alm	Ruins	1		SAS 9	129		1057	1		1			1		2 1 - 2 -				-
			-		91															
		4																		
SHIPPING	g NO. ω	USE							LAI	B NOT	ES								28	The second second

WA 2917

BE-34 (1/92)

PROJECT MEMORANDUM

DATE:

January 12, 1993

TO:

Joe Depner, Hydrogeologist

FROM:

Nels Cone, Chemist

SUBJECT:

DATA VALIDATION OF ANALYTICAL RESULTS FROM PIER 91 RCRA

FACILITY INVESTIGATION, PROJECT 624878, DATA SET #7A

Between September 29 and October 11, 1992, soil samples were collected by Burlington Environmental Inc. (Burlington). These samples were submitted to Sound Analytical Services of Tacoma, Washington for semivolatile compound (EPA SW-846 Method 8270) and Total Petroleum Hydrocarbon (EPA SW-846 Methods 418.1 and 8015) analyses. I performed a review of the analytical results on the following samples:

CP-S-1	CP-HA-9-1.5-2	CP-112-6-8	CP-115A-6-8	CP-122A-14-16
CP-S-2	CP-HA-10-4.5-5	CP-113-2-4	CP-116-6-8	CP-916-6-8
CP-S-3	CP-HA-10-5-5.5	CP-113-6-8	CP-121-2-4	CP-922A-6-8
CP-S-4	CP-111-2-4	CP-114-2-4-	CP-121-6-8	
CP-S-5	CP-111-6-8	CP-114-6-8	CP-122A-2-4	
CP-S-6	CP-112-2-4	CP-115A-2-4	CP-122A-6-8/	

Properly completed chain-of-custody forms were included, along with documented signatures from field to laboratory receipt. The samples were shown as having been properly iced and received in good condition. Holding times were clearly written and evaluated according to regulatory protocol (*National Functional Guidelines for Organic Data Review*, USEPA, 1990). The samples received the requested analyses, and laboratory extraction/analysis times met the established guidelines.

Duplicate analyses were performed as required by the Quality Assurance Project Plan (QAPP). Relative percent differences between individual results indicate detection consistency, although not all met within required quality control (QC) guidelines. Method blank analyses displayed surrogate spike recoveries well within required QC limits, and no blank corrections were required.

Results from semivolatile compound analyses indicate elevated levels of hydrocarbon compounds requiring dilution in most all samples tested. As a consequence, elevated detection limits were reported, and results were found to be below the practical quantitation limit for several detected compounds. Several sample surrogate recoveries were outside normal QC limits, as were the recoveries for several matrix spike/matrix spike duplicate analyses.

Page 2

Project Memorandum from Nels Cone

Subject: Data Validation, Pier 91, Data Set #7A

January 12, 1993

For total petroleum hydrocarbon analyses, most samples were diluted to ensure that target analytes were within the instrument calibration range. In the few remaining samples, contaminating hydrocarbons not identified as matching the elution pattern for any single product are present. Because the total concentration exceeds the instrument calibration range, the resulting values should be considered as estimated quantities only.

Supporting documentation for sample analyses in the form of instrument calibration/tuning data, and chromatographic/mass spectral data demonstrates proper data consistency. The appropriate data qualifier flags accompanied most all analytical results as needed, and their use is consistent with USEPA guidelines. Specific exceptions occurred when bis(2-ethylhexyl)phthalate was found in the method blanks. Sample results were not flagged; instead this contaminant was addressed in the analytical narrative. Regardless, the data quality objectives as defined in Table F-2 of the QAPP are met. Accordingly, this data set can be considered valid for its intended use.

NC/rlk/b42:1972b.mem

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4513 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

November 17, 1992

Burlington Environmental Engineering To:

PROJECT NUMBER: 624878

PROJECT NAME: Pier 91

LABORATORY WORK ORDER NUMBER: 27497

Samples were taken on 9/29/92, and received at Sound on 10/1/92. Samples were analyzed for Semivolatile organics by EPA 8270, Total Petroleum Hydrocarbons by EPA 418.1 modified for soil, and Total Petroleum Fuel Hydrocarbons by EPA 8015 modified. Sample extraction and analysis holding times were

SEMIVOLATILE ORGANICS-

Samples -1, -2, and -3 were extracted on 10/5/92, and analyzed using EPA method 8270 on 10/11/92. No compounds were found in the method blank above the PQL's. Matrix spike and matrix spike duplicate percent recovery results were outside quality control limits for 2,4-Dinitrotoluene, and matrix spike duplicate percent recovery results were outside limits for 2-Chlorophenol. Quality control limits for relative percent differences were exceeded for Pentachlorophenol, Phenol, 2-Chlorophenol, 4-Chloro-3-Methylphenol, and 4-Nitrophenol. All other quality control parameters were within acceptable limits.

TOTAL PETROLEUM FUEL HYDROCARBONS-

Samples -1, -2, and -3 were extracted on 10/5/92, and analyzed using EPA method 8015 modified on 10/8/92. Surrogate recoveries for -1, -2, and -3 were outside quality control limits due to sample dilution required by matrix interferences. The relative percent difference was outside quality control limits, and the sample and duplicate extraction and analysis were repeated with similar results, implying a matrix interference or sample non-homogeneity. The percent recovery for matrix spike and matrix spike duplicate was outside QC limits due to sample dilution required for matrix interferences. All other quality control parameters were within limits.

TOTAL PETROLEUM HYDROCARBONS-

Samples -1, -2, and -3 were extracted on 10/6/92, and analyzed using EPA method 418.1 modified for soils on 10/6/92. Matrix spike and matrix spike duplicate results for percent recovery exceeded quality control limits due to

sample dilution required due to matrix interferences. other quality control parameters were within limits.

All results have been dry weight corrected.

No blank correction of results has been utilized.

Please call if there are any questions about this package.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST. TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental Date: October 22, 1992

Engineering

Report On: Analysis of Soil

Lab No.: 27497

Page 1 of 12

IDENTIFICATION:

Samples Received on 10-01-92

Project: 624878 Pier 91

ANALYSIS:

Lab No. 27497-1

Client ID: CP-HA9-1.5-2

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-5-92 Date Analyzed: 10-11-92

		-		
CAS No.	Compounds	Concentration ug/kg	PQL	Flags
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3 59-50-7	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND N	11,000 11,000	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 2 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-1

Client ID: CP-HA9-1.5-2

EPA Method 8270 Continued

		 	-	
CAS No.	Compounds	Concentration ug/kg	PQL	Flags
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-2 99-32-9 51-28-5 100-64-9 121-14-2 84-66-2 7005-73-7 100-64-9 121-14-2 84-66-2 7005-73-7 100-55-3 118-74-1 87-86-5 85-01-8 120-12-7 84-74-2	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	11,000 ND ND ND ND ND ND ND ND ND ND	11,000 11,000	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 3 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-1

Client ID: CP-HA9-1.5-2

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	4,000 27,000 8,000 ND ND 18,000 10,000 ND 3,200 ND 5,600 ND	11,000 11,000 21,200 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000	J J J

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-d6 2-Fluorophenol 2,4,6-Tribromophenol	83	35 - 114	23 - 120
	96	43 - 116	30 - 115
	77	33 - 141	18 - 137
	82	10 - 94	24 - 113
	64	21 - 100	25 - 121
	78	10 - 123	19 - 122

Burlington Environmental, Engineering Project: 624878 Page 4 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-1

Client ID: CP-HA9-1.5-2

TPH Per EPA Method 418.1 Date Extracted: 10-6-92 Date Analyzed: 10-6-92

Total Petroleum Hydrocarbons, mg/kg

76,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-5-92 Date Analyzed: 10-8-92

Total Petroleum Fuel Hydrocarbons, mg/kg

38,000

X2

TPH as

Diesel and Heavy Oil

SURROGATE RECOVERY, & 1-chlorooctane o-terphenyl

X8 X8

Burlington Environmental, Engineering

Project: 624878 Page 5 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-2

Client ID: CP-HA10-4.5-5

Semivolatile Organics Per EPA SW-846 Method 8270 Date Extracted: 10-8-92

Date Analyzed: 10-11-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-32-1 95-48-32-1 95-48-32-1 95-48-3 621-64-7 67-72-1 98-95-5 105-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3 59-50-7	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol	ND N	8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 16,000	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 6 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-2

Client ID: CP-HA10-4.5-5

EPA Method 8270 Continued

			-	
CAS No.	Compounds	Concentration ug/kg	PQL	Flags
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-2 99-09-2 83-32-9 51-28-5 100-04-9 121-14-2 84-66-72-3 86-73-7 100-534-52-1 86-30-6 101-55-3 118-86-5 85-01-8 120-12-7 84-74-2	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	34,000 ND ND ND ND ND ND ND 1,800 ND ND ND ND ND ND ND ND ND ND	8,000 8,000 8,000 8,000 40,000 8,000 40,000 40,000 40,000 8,	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 7 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-2

Client ID: CP-HA10-4.5-5

EPA Method 8270 Continued

		+		
CAS No.	Compounds	Concentration ug/kg	PQL	Flags
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	1,000 3,600 ND ND 2,800 3,000 2,000 ND ND ND ND ND	8,000 8,000 16,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000	カカ カカカ
ND - Not Do	to at a d			

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d5	67	35 - 114	23 - 120
2-Fluorobiphenyl	82	43 - 116	30 - 115
p-Terphenyl-d ₁₄	70	33 - 141	18 - 137
Phenol-d ₆	66	10 - 94	24 - 113
2-Fluorophenol	44	21 - 100	25 - 121
2,4,6-Tribromophenol	64	10 - 123	19 - 122

Burlington Environmental, Engineering Project: 624878 Page 8 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-2

Client ID: CP-HA10-4.5-5

TPH Per EPA Method 418.1 Date Extracted: 10-6-92 Date Analyzed: 10-6-92

Total Petroleum Hydrocarbons, mg/kg

29,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-5-92 Date Analyzed: 10-8-92

Total Petroleum Fuel Hydrocarbons, mg/kg

37,000

X2

TPH as

Diesel and Heavy Oil

SURROGATE RECOVERY, & 1-chlorooctane o-terphenyl

X8 X8

Burlington Environmental, Engineering

Project: 624878 Page 9 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-3

Client ID: CP-HA10-5-5.5

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 10-8-92 Date Analyzed: 10-11-92

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3 59-50-7	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	PD ND	10,000 20,000	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 10 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-3

Client ID: CP-HA10-5-5.5

EPA Method 8270 Continued

			T	
CAS No.	Compounds	Concentration		Flags
		ug/kg	PQL	
91-57-6	2-Methylnaphthalene	22,000	10,000	100
77-47-4	Hexachlorocyclopentadiene	ND	10,000	
88-06-2	2,4,6-Trichlorophenol	ND	10,000	
95-95-4	2,4,5-Trichlorophenol	ND	10,000	
91-58-7	2-Chloronaphthalene	ND	10,000	
88-74-4	2-Nitroaniline	ND	50,000	
131-11-3	Dimethyl phthalate	ND	10,000	
208-96-8	Acenaphthylene	4,400	10,000	J
606-20-2 99-09-2	2,6-Dinitrotoluene	ND	10,000	J
83-32-9	3-Nitroaniline	ND	50,000	
51-28-5	Acenaphthene	1,800	10,000	J
100-02-7	2,4-Dinitrophenol 4-Nitrophenol	ND	50,000	
132-64-9	Dibenzofuran	ND	50,000	
121-14-2	2,4-Dinitrotoluene	1,600	10,000	J
84-66-2	Diethylphthalate	ND	10,000	
7005-72-3	4-Chlorophenyl phenyl ether	ND	10,000	
86-73-7	Fluorene	ND	10,000	
100-01-6	4-Nitroaniline	4,800	10,000	J
534-52-1	4,6-Dinitro-2-methylphenol	ND	50,000	
86-30-6	N-Nitrosodiphenylamine	ND	50,000	
101-55-3	4-Bromophenyl phenyl ether	ND	10,000	
118-74-1	Hexachlorobenzene	ND	10,000	
87-86-5	Pentachlorophenol	ND	10,000	
85-01-8	Phenanthrene	ND	50,000	
120-12-7	Anthracene	12,000	10,000	
84-74-2	Di-n-butylphthalate	2,400	10,000	J
		13,000	10,000	

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878 Page 11 of 12

Lab No. 27497 October 22, 1992

Lab No. 27497-3

Client ID: CP-HA10-5-5.5

EPA Method 8270 Continued

CAS No.	Compounds	Concentration ug/kg	PQL	Flags
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	800 4,600 ND ND 1,300 2,800 30,000 ND ND ND ND ND ND	11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000 11,000	J J J
ND - Not Do	to a who a si		,	•

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	68	35 - 114	23 - 120
	86	43 - 116	30 - 115
	72	33 - 141	18 - 137
	64	10 - 94	24 - 113
	52	21 - 100	25 - 121
	64	10 - 123	19 - 122

Burlington Environmental, Engineering

Project: 624878 Page 12 of 12 Lab No. 27497 October 22, 1992

Lab No. 27497-3

Client ID: CP-HA10-5-5.5

TPH Per EPA Method 418.1 Date Extracted: 10-6-92 Date Analyzed: 10-6-92

Total Petroleum Hydrocarbons, mg/kg

28,000

TPH Per EPA SW-846 Modified Method 8015 Date Extracted: 10-5-92 Date Analyzed: 10-8-92

Total Petroleum Fuel Hydrocarbons, mg/kg

27,000

X2

TPH as

Diesel and Heavy Oil

SURROGATE RECOVERY, % 1-chlorooctane o-terphenyl

X8

X8

SOUND ANALYTICAL SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270 Page 1 of 3

Client: Burlington Environmental Engineering Services

Lab No: 27497qc3 Units: ug/kg Date: October

October 22, 1992

Blank No: P2274

	D BLANK	T	
Compound	Blank Value	PQL	Flags
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl) ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene	222222222222222222222222222222222222222	330 330 330 330 330 330 330 330 330 330	

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 2 of 3

Client: Burlington Environmental Engineering Services

Lab No: 27497qc3

Date:

Units: ug/kg

October 22, 1992

Blank No: P2274

MEINC	DD BLANK	-	
Compound	Blank Value	PQL	Flags
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Fluoranthene Pyrene Butyl benzyl phthalate fluoranthene bis(2-ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(a)anthracene bis(2-ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	00000000000000000000000000000000000000	1,650 1,650 1,650 1,650 330 330 330 330 330 1,650 330 1,650 330 1,650 330 330 330 330 330 330 330 330 330 3	J

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 3 of 3

Client:

Burlington Environmental Engineering Services

Lab No: 27497qc3

Units:

ug/kg

Date:

October 22, 1992

Blank No: P2274

ND = Not Detected.

PQL = Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

SEMTVOLATTLE SUPPOCATES

Surrogate	Percent Recovery	Control Water	Limits Soil	
Nitrobenzene - d5	78	35 - 114	23 - 120	į.
2-Fluorobiphenyl	80	43 - 116	30 - 115	
p-Terphenyl-d14	68	33 - 141	18 - 137	
Phenol-d6	56	10 - 94	24 - 113	
2-Fluorophenol	64	21 - 100	25 - 121	
2,4,6-TBP	63	10 - 123	19 - 122	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name: Burlington Environmental Engineering

Lab No:

27497qc4 October 26, 1992

	SEMI-V	CLATILE	ORGANICS				
COMPOUND	SPIKE (ug/kg)	SAMPLE RESULT	CONC MS	% REC	CONC %	REC	RPD
1,2,4-Trichlorobenzene	100,000	· ND	73,000	73	69,000	69	5.6
Acenaphthene	100,000	ND	92,000	92	90,000	90	2.2
2,4 Dinitrotoluene	100,000	ND	97,000	97	108,000	108	11
Pyrene	100,000	ND	94,000	94	101,000	101	7.2
N-nitrosodi-n-Propylamine	100,000	ND	75,000	75	71,000	71	5.5
1,4-Dichlorobenzene	100,000	ND	62,000	52	60,000	60	3.3
Pentachlorophenol	100,000	ND	45,000	45	20,000	20	77
Phenol	100,000	ND	64,000	64	29,000	29.	75
2-Chlorophenol	100,000	ND	43,000	43	21,000	21	69
4-Chloro-3-Methylphenol	100,000	ND	70,000	70	33,000	33	72
4-Nitrophenol	100,000	ND	48,000	48	24,000	24	67

[%] REC = Percent Recovery

*QC Limits:	RPD	\$ RECOVERY
1,2,4-Trichlorobenzene Acenaphthene 2,4 Dinitrotoluene Pyrene N-nitrosodi-n-	23 19 47 36	38-107 31-137 28-89 35-142
Propylamine 1,4-Dichlorobenzene Pentachlorophenol Phenol 2-Chlorophenol 4-Chloro-3-Methylphenol 4-Nitrophenol	38 27 47 35 50 33	41-126 28-104 17-109 26-90 25-102 26-103 11-114

^{*} These are advisory limits only.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

TPH by Method 418.1

Client: Burlington Environmental Engineering
Lab No: 27497qc1
Matrix: Soil

Units:

mg/kg

Date:

October 22, 1992

DUPLICATE

_		
Dup	NO.	27497-2

Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Hydrocarbons	29,000	33,000	12.9

RPD = Relative Percent Difference $= [(S - D) / ((S + D) / 2] \times 100$

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MSD No 27497-2

Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	8R	Spike Dup Result (MSD)	RPD
Total Petroleum Hydrocarbons	29,000	38,000	960	X5	32,000	17,1

%R = Percent Recovery

 $= [(MS - SR) / SA] \times 100$

RPD = Relative Percent Difference

 $= [(MS - MSD) / ((MS + MSD) / 2] \times 100$

ME	THOD	DI	ANTE

Parameter	Blank Value
Total Petroleum Hydrocarbons	< 10

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 1 of 2

Client: Burlington Environmental Engineering

Lab No:

27497qc2

Matrix: Units: mg/kg

Soil

Date:

October 22, 1992

DUPLICATE

Dup. No. 27497-2

Parameter	Sample(S)	Duplicate(D)	RPD	Flags
Total Petroleum Fuel Hydrocarbons	37,000	29,000	25	X4
SURROGATE RECOVERYS 1-chloroctane o-terphenyl				X8

RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MSD No. 27497-2

Parameter	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Spike Dup Result (MSD)	RPD	
Total Petroleum Fuel Hydrocarbons	37,000	25,000	405	X5	30,000	18	

%R = Percent Recovery

 $= [(MS - SR) / SA] \times 100$

RPD = Relative Percent Difference

 $= [(MS - MSD) / ((MS + MSD) / 2] \times 100$

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Page 2 of 2

Client: Burlington Environmental Engineering

Lab No:

27497qc2

Lab No: 27497qc2
Matrix: Soil
Units: mg/kg
Date: October 22, 1992

METHOD BLANK

Parameter	Blank Value
Total Petroleum Fuel Hydrocarbons	< 10
SURROGATE RECOVERYS 1-chlorooctane o-terphenyl	77 56

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4613 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

ANALYTICAL NARRATIVE

(8270) CHECKLIST

Client:

Burlington Environmental Lab No.: 27497n

Project:

Engineering Services

Prepared by: Edgar Glover

Delivered by:

Analyzed by: Brent Hepner

Lab Number	27497-1	27497-2	27497-3	Matrix Spike 27497-1	Matrix Spike Duplicate 27497-1			
Client ID	CP-HA 9-1.5-2	CP-HA 10-4.5-5	CP-HA 10-5-5.5					
Date Sampled	9-29-92	9-29-92	9-29-92					
Date Received	10-1-92	10-1-92	10-1-92	10-1-92	10-1-92			
Date Extracted	10-8-92	10-8-92	10-8-92	10-8-92	10-8-92			
Dated Analyzed	10-11-92	10-11-92	10-11-92	10-11-92	10-11-962			
Sample Matrix	Soil	Soil	Soil	Soil	Soil			
Sample Vol./Weight	1.0478	1.2372	1.0880	1.1112	1.2357			
Percent Solids	89.52	94.76	94.37	89.52	89.52			
Dry Weight	0.9380	1.1724	1.0267	0.9955	1.1062			
Extraction	3550	3550	3550	3550	3550			
Extraction Solvent	Acetone /MeCl ₂							
Extract Volume	10	10	10	10	10			
Dilution Factor	1:2	1:2	1:2	1:2	1:2			
Condition of samples on receipt: All samples had GPC cleanup.								

Notes and Discussion:

ANALYTICAL NARRATIVE

(8270) CHECKLIST

Client:

Burlington Environmental Lab No.: 27497n

Engineering Services

Project:

Prepared by: Edgar Glover

Delivered by:

Analyzed by: Brent Hepner

Lab Number	Method Blank P2274		
Client ID			
Date Sampled			
Date Received			
Date Extracted	10-8-92		
Dated Analyzed	10-11-92		
Sample Matrix	Sea Sand		
Sample Vol./Weight	30.0012		
Percent Solids	100		
Dry Weight	30.0012		
Extraction	3550		
Extraction Solvent	Acetone /MeCl ₂		
Extract Volume	10		
Dilution Factor	1:2		
Condition of samples			

Condition of samples on receipt: 0

Notes and Discussion:

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-3047

DATA QUALIFIER FLAGS

- ND: Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation limit, corrected for sample dilution.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- C: The identification of this analyte was confirmed by GC/MS.
- B: This analyte was also detected in the associated method blank. There is a possibility of blank contamination.
- E: The concentration of this analyte exceeded the instrument calibration range.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- A: This TIC is a suspected aldol-condensation product.
- M: Quantitation Limits are elevated due to matrix interferences.
- S: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an estimated quantity.
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous.
- X4a: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside QC limits due to matrix composition.
- X10: Surrogate recovery outside QC limits due to high contaminant levels.

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

c.o.c. SERIAL NO. ____6072

PROJECT	NAME ()	681187	8	FI	MAJOR TASK 1301	-	AN TOP CO	\$8/	7		//		7	/		PRESER-	/		,
SAMPLER	SAMPLERS J. PCTYLE							2/5	77 (1		/			/7	70	REMARKS		
LAB DES	FINATION	5.11.5	5,			L N	A		13	A	/ /	/ /	/ /	/ /	\ \3		(CHEMICA	L ANALYSIS RE	QUEST
SAMPLE NO.	DATE	TIME	Somo	Spa	SAMPLE LOCATION	NO. OF CONTAINERS	1	3/6	\ /	3/					CHEMICA		FOHM NU	MBER IF APPLIC	PABLE
	9.29	1200		V.	CP-1119-1.5-6	1. 1	X	X	X					X					
4	229	1400		Y	(P-11/10-45	5 1	Z	×	×					7	***				
1	9-29	1440		K	(P-11+10-5-5.	5 1	X	×	×					×					
							-									ļ			
				_			-												
			-			_	+-									-			
-			-	-		-	-	-		-						-			
			-	-		_	+-									1	uaniu wa mata wa mana a		
							1												
							1									1			
	<u> </u>																		
RELINQUI	SHED BY								RECE	EIVED	ВУ)							
()		SIG	NATU	RE		DATE	, ,	ME		-	6	<u></u>	,	SIGI	NATURE			DATE	
54		1-	-K			10.1	10	20		1	1	Gm.	Lu	-7'	<u>'</u>			10-1	10:00
1										To the second	U							'	
			-				+		-										-
SHIPPIN	SHIPPING NOTES								LAE	NOT	ES								